|本期目录/Table of Contents|

[1]邹观莲,陈 娟,王艳阳,等.放射性小鼠肺纤维化基因表达谱生物信息学动态分析[J].宁夏医科大学学报,2019,(06):577-583.[doi:10.16050/j.cnki.issn1674-6309.2019.06.008]
 ZOU Guanlian,CHEN Juan,WANG Yanyang,et al.Bioinformatics Analysis of Gene Expression Pattern at Different Time Points during Radiation Pulmonary Fibrosis in Mice[J].Ningxia Medical University,2019,(06):577-583.[doi:10.16050/j.cnki.issn1674-6309.2019.06.008]
点击复制

放射性小鼠肺纤维化基因表达谱生物信息学动态分析(PDF)
分享到:

《宁夏医科大学学报》[ISSN:1005-8486/CN:64-1029/R]

卷:
期数:
2019年06期
页码:
577-583
栏目:
论著
出版日期:
2019-06-30

文章信息/Info

Title:
Bioinformatics Analysis of Gene Expression Pattern at Different Time Points during Radiation Pulmonary Fibrosis in Mice
文章编号:
1674-6309(2019)06-0577-07
作者:
邹观莲1 陈 娟2 王艳阳3 赵 仁3
(1. 宁夏医科大学研究生院,银川 750004, 2. 宁夏医科大学总医院呼吸与危重症医学科,银川 750004, 3. 宁夏医科大学总医院肿瘤医院放疗科,银川 750004)
Author(s):
ZOU Guanlian1 CHEN Juan2 WANG Yanyang3 ZHAO Ren3
(1. Graduate School of Ningxia Medical University,Yinchuan 750004,China; 2. Department of Respiratory and Critical Care Medicine,the General Hospital of Ningxia Medical University, Yinchuan 750004,China; 3. Department of Radiotherapy,Cancer Hospital,the General Hospital of Ningxia Medical University,Yinchuan 750004,China)
关键词:
放射性肺纤维化基因芯片生物信息学分析差异表达基因时间点
Keywords:
radiation induced lung fibrosismicroarraybioinformatics analysisdifferentially expressed genestime points
分类号:
R730.55
DOI:
10.16050/j.cnki.issn1674-6309.2019.06.008
文献标志码:
A
摘要:
目的 探讨放射性肺纤维化(RILF)形成过程中基因表达谱的变化。方法 从美国国立生物技术信息中心( National Center for Biotechnology Information,NCBI) 公共基因芯片数据平台( gene expression omnibus,GEO)下载RILF相关的时间序列基因表达数据。通过信号通路数据库(kyoto encyclopedia of genes and enomes, KEGG) 进行信号通路富集分析,并通过蛋白-蛋白相互作用(protein-protein interaction, PPI)网络分析获得RILF发生过程中的关键基因。结果 在每个时间点分别鉴定不同数量的上调、下调的差异表达基因(DEGs),其中,不同时间点上调的DEGs主要在泛素介导的蛋白质水解、造血通路、昼夜节律、细胞因子受体相互作用等通路显著富集。在下调的DEGs中,不同时间点富集的通路主要为cGMP-PKG信号通路、细胞外基质受体相互作用、唾液分泌和肿瘤相关通路。在照射后第8周这个时间点可以筛选到数量最多的关键基因。这些关键基因中139个属于上调表达,57个属于下调表达。第8周上调表达的关键基因主要在免疫调节、防御反应及细胞活化过程中发挥作用。下调的关键基因主要在细胞周期、细胞分裂及染色体分离过程中发挥作用。结论 X射线照射(2.61Gy·min-1)第8周可能是小鼠RILF发病过程中的关键时期,肺脏基因表达谱随时间变化而明显不同。
Abstract:
Objective To investigate the molecular mechanism of the biological process associated with radiation induced lung fibrosis(RILF) and provide more biological information for further study. Methods Time-series gene expression data of RILF was downloaded from Gene Expression Omnibus(GEO) database. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis and Protein-Protein interaction (PPI) networks analysis were performed. Results Different amount of up-regulated and down-regulated differentially expressed genes(DEGs) were identified at each time point. Ubiquitin mediated proteolysis,Hematopoietic cell lineage,Circadian rhythm,and Cytokine-cytokine receptor interaction were found to be highly enriched in our KEGG analysis of the up-regulated DEGs. For the down-regulated DEGs,the most enriched KEGG pathway were cGMP-PKG signaling pathway,ECM-receptor interaction,salivary secretion,and pathways in cancer of the different time points. The largest number of hub genes could be screened at the time point 8 weeks after irradiation. Total 139 of these hub genes were up-regulated and 57 were down-regulated. At the 8th week,the up-regulated expression hub genes mainly played roles in immunomodulation,defense response and cell activation. The down-regulated hub genes mainly played roles in cell cycle,cell division and chromosome separation. Conclusion Our data suggest that the eighth week of X-ray irradiation(2.61Gy·min-1) may be a critical period in the pathogenesis of RILF in mice,and the changes of gene expression profiles in lungs vary significantly with time.

参考文献/References:

[1] Bledsoe TJ,Nath SK,Decker RH. Radiation pneumonitis[J]. Clinics in Chest Medicine,2017,38(2):201-208.
[2] Citrin DE,Prasanna PGS,Walker AJ,et al. Radiation-induced fibrosis: mechanisms and opportunities to mitigate.Report of an NCI workshop, September 19, 2016[J]. Radiat Res,2017,188(1): 1-20.
[3] Son B,Kwon T,Lee S,et al. CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress- and ROS-dependent mechanisms[J]. Am J Physiol Lung Cell Mol Physiol,2017,313(5):L916-929.
[4] Jackson IL,Baye F,Goswami CP,et al. Gene expression profiles among murine strains segregate with distinct differences in the progression of radiation-induced lung disease[J]. Dis Model Mech,2017,10(4):425-437.
[5] Xie L,Zhou JD,Zhang SY,et al. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung[J]. Radiat Oncol, 2014,9:111.
[6] Barrett T,Wilhite SE,Ledoux P,et al. NCBI GEO: archive for functional genomics data sets: update[J]. Nucleic Acids Res,2013,41(Database issue): 991-995.
[7] Parkinson H,Kapushesky M,Kolesnikov N,et al. ArrayExpress update: from an archive of functional genomics experiments to the atlas of gene expression[J]. Nucleic Acids Res,2009,37(Database issue): 868-872.
[8] Yuan C,Cai JF. Time-series expression profile analysis of fracture healing in young and old mice[J]. Mol Med Rep,2017,16(4):4529-4536.
[9] Citrin DE ,Shankavaram U,Horton JA ,et al. Role of type II pneumocyte senescence in radiation-induced lung fibrosis[J]. JNCI Journal of the National Cancer Institute,2013,105(19):1474-1484.
[10] Winnepenninckx V,Lazar V,Michiels S,et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome[J]. J Natl Cancer Inst,2006, 98(7): 472-482.
[11] Luo SL,Cao NN, Tang Y,et al. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis[J]. PLoS One,2017,12(6):e0178549.
[12] Huang DW,Sherman BT,Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009,4(1): 44-57.
[13] Franceschini A,Szklarczyk D,Frankild S,et al. STRING v9.1:protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Res,2013,41(Database issue):808-815.
[14] Shannon P,Markiel A,Ozier O,et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504.
[15] Mou T,Zhu D,Wei XF,et al. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis[J]. World J Surg Oncol,2017,15(1): 63.
[16] Rajan Radha R, Chandrasekharan G. Pulmonary injury associated with radiation therapy - Assessment, complications and therapeutic targets[J]. Biomed Pharmacother,2017,89: 1092-1104.
[17] Liang H,Deng LF,Chmura S,et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing[J]. J Immunol, 2013,190(11): 5874-5881.
[18] Zhang H,Han G,Liu H,et al. The development of classically and alternatively activated macrophages has different effects on the varied stages of radiation-induced pulmonary injury in mice[J]. J Radiat Res,2011,52(6): 717-726.
[19] Ding NH,Li JJ,Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets,2013,14(11):1347-1356.
[20] Willner J,Vordermark D,Schmidt M,et al. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation[J]. Int J Radiat Oncol Biol Phys,2003,55(3):617-625.

相似文献/References:

[1]赵嘉庆,王 健,王娅娜,等.细粒棘球蚴中国大陆株zw-5基因的克隆 和生物信息学分析[J].宁夏医科大学学报,2005,(02):85.[doi:10.3969/j.issn.1674-6309.2005.02.001]
 ZHAO Jia-qing,WANG Jian,WANG Ya-nan,et al.Cloning and Bioinformatics Analyzing of the zw-5 Gene From Echinococcus Granulosus of China[J].Ningxia Medical University,2005,(06):85.[doi:10.3969/j.issn.1674-6309.2005.02.001]
[2]王 妍,陈晓平,薛晓成,等.腮腺肿瘤中HPV37种亚型的分布[J].宁夏医科大学学报,2012,(06):596.
 WANG Yan,CHEN Xiao-ping,XUE Xiao-cheng,et al.Distribution of 37 Kinds of Human Papillomavirus Genotypes in Parotid Gland Tumors[J].Ningxia Medical University,2012,(06):596.

备注/Memo

备注/Memo:
收稿日期:2018-11-28
基金项目:宁夏自然科学基金(NZ17144)
作者简介:邹观莲(1990-),女,江西人,在读硕士研究生,研究方向:肿瘤放射治疗学。
通信作者:王艳阳,副主任医师,博士,硕士研究生导师,从事肿瘤放射治疗的诊疗和相关研究。E-mail:fdwyy1981@hotmail.com
更新日期/Last Update: 2019-06-30