|本期目录/Table of Contents|

[1]马 皓,庄春林,缪震元,等.分子探针在靶点识别中的应用[J].宁夏医科大学学报,2018,(04):486-491.[doi:10.16050/j.cnki.issn1674-6309.2018.04.030]
点击复制

分子探针在靶点识别中的应用(PDF)
分享到:

《宁夏医科大学学报》[ISSN:1005-8486/CN:64-1029/R]

卷:
期数:
2018年04期
页码:
486-491
栏目:
综 述
出版日期:
2019-09-30

文章信息/Info

Title:
-
作者:
马 皓1 庄春林2 缪震元2 张万年12
(1. 宁夏医科大学药学院,银川 700004; 2. 第二军医大学药学院,上海 200433)
Author(s):
-
关键词:
先导化合物分子探针靶点识别
Keywords:
-
分类号:
R914
DOI:
10.16050/j.cnki.issn1674-6309.2018.04.030
文献标志码:
A
摘要:
-
Abstract:
-

参考文献/References:


[1] Mullard A. 2015 FDA drug approvals[J]. Nat Rev Drug Discov,2016,15(2):73-76.
[2] Rath SN,Ray M,Pattnaik A,et al. Drug target identification and elucidation of natural inhibitors forbordetella petrii: anin silicostudy[J]. Genomics & Informatics,2016,14(4):241.
[3] Lomenick B,Olsen RW,Huang J. Identification of direct protein targets of small molecules[J]. ACS Chem Biol,2011,6(1):34-46.
[4] 陈桂生,李露撕,史树贵,等. 家族性肌萎缩侧索硬化症研究中pGBKT7-mSOD1cDNA酵母双杂交表达载体的构建[J]. 宁夏医学院学报,2007(3):225-227.
[5] Qi Q,Ding C,Hong P,et al. X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging[J]. International Journal of Molecular Medicine,2015,35(3):569-578.
[6] Evans MJ,Cravatt BF. Mechanism-based profiling of enzyme families[J]. Chem Rev,2006,106(8):3279-3301.
[7] Chang J,Kim Y,Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification[J]. Nat Prod Rep,2016,33(5):719-730.
[8] Ziegler S,Pries V,Hedberg C,et al. Target identification for small bioactive molecules: finding the needle in the haystack[J]. Angew Chem Int Ed Engl,2013,52(10):2744-2792.
[9] Yuan K,Lei Y,Huang C. Application of chemistry-based functional proteomics to screening for novel drug targets[J]. Comb Chem High Throughput Screen,2010,13(5):414-421.
[10] Sato S I,Kwon Y,Kamisuki S,et al. Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin[J]. Journal of the American Chemical Society,2007,129(4):873-880.
[11] Jiarpinitnun C,Kiessling LL. Unexpected enhancement in biological activity of a GPCR ligand induced by an oligoethylene glycol substituent[J]. J Am Chem Soc,2010,132(26):8844-8845.
[12] Borodovsky A,Ovaa H,Kolli N,et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family[J]. Chem Biol,2002,9(10):1149-1159.
[13] Sato S,Murata A,Shirakawa T,et al. Biochemical target isolation for novices: affinity-based strategies[J]. Chem Biol,2010,17(6):616-623.
[14] Burbaum J,Tobal GM. Proteomics in drug discovery[J]. Curr Opin Chem Biol,2002,6(4):427-433.
[15] Cravatt BF,Wright AT,Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry[J]. Annu Rev Biochem,2008,77:383-414.
[16] Uttamchandani M,Lu CH,Yao SQ. Next generation chemical proteomic tools for rapid enzyme profiling[J]. Acc Chem Res,2009,42(8):1183-1192.
[17] Clitherow JW,King FD,Middlemiss DN,et al. The discovery and development of 5-HT-terminal autoreceptor antagonists[J]. Prog Med Chem,2003,41:129-165.
[18] 杨红芹,李学军. 化学蛋白质组学与药物靶点的发现[J]. 药学学报,2011,46(8):877-882.
[19] Smith E,Collins I. Photoaffinity labeling in target- and binding-site identification[J]. Future Med Chem,2015,7(2):159-183.
[20] 张煚,周虎臣. 小分子探针在确定活性化合物的生物靶点中的应用[J]. 药学学报,2012,47(3): 299-306.
[21] Bachovchin DA,Brown SJ,Rosen H,et al. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes[J]. Nature Biotechnology,2009,27(4):387-394.
[22] Bao X,Zhao Q,Yang T,et al. A chemical probe for lysine malonylation[J]. Angew Chem Int Ed Engl,2013,52(18):4883-4886.
[23] Speers AE,Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods[J]. Chem Biol,2004,11(4):535-546.
[24] Hosoya T,Hiramatsu T,Ikemoto T,et al. Novel bifunctional probe for radioisotope-free photoaffinity labeling: compact structure comprised of photospecific ligand ligation and detectable tag anchoring units[J]. Org Biomol Chem,2004,2(5):637-641.
[25] Qiu WW,Xu J,Li JY,et al. Activity-based protein profiling for type I methionine aminopeptidase by using photo-affinity trimodular probes[J]. Chembiochem,2007,8(12):1351-1358.
[26] Carter-O'Connell I,Jin H,Morgan RK,et al. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets[J]. J Am Chem Soc,2014,136(14):5201-5204.
[27] Rostovtsev VV,Green LG,Fokin VV,et al. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes[J]. Angew Chem Int Ed Engl,2002,41(14):2596-2599.
[28] Yang YY,Grammel M,Raghavan AS,et al. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical protomics[J]. Chem Biol,2010,17(11):1212-1222.
[29] Rowland MM,Best MD. Reeling in the catch:advancing cleavable linkers for proteomics[J]. Chem Biol,2010,17(11):1166-1168.
[30] Leriche G,Chisholm L,Wagner A. Cleavable linkers in chemical biology[J]. Bioorg Med Chem,2012,20(2):571-582.
[31] Verhelst SH,Fonovi M,Bogyo M. A mild chemically cleavable linker system for functional proteomic applications[J]. Angewandte Chemie Intermational Edition,2007,46(8):1284-1286.
[32] Zhuang C,Zhang W,Sheng C,et al. Chalcone: A privileged structure in medicinal chemistry[J]. Chem Rev,2017,117(12):7762-7810.
[33] Zhou B,Yu X,Zhuang C,et al. Unambiguous identification of β-tubulin as the direct cellular target responsible for the cytotoxicity of chalcone by photoaffinity labeling[J]. Chem Med Chem,2016,11(13):1436-1445.
[34] Chidester CG,Krueger WC,Mizsak SA,et al. The structure of CC-1065,a potent antitumor agent and its binding to DNA[J]. 1981,103:7629-7635.
[35] Wirth T,Pestel GF,Ganal V,et al. The two faces of potent antitumor duocarmycin-based drugs: a structural dissection reveals disparate motifs for DNA versus aldehyde dehydrogenase 1 affinity[J]. Angew Chem Int Ed Engl,2013,52(27):6921-6925.
[36] Tietze LF,Sieber SA. Duocarmycin analogues without a DNA-binding indole unit associate with aldehyde dehydrogenase 1A1 and not DNA: a reply[J]. Angew Chem Int Ed Engl,2013,52(21):5447-5449.
[37] 隋御,马璐,辛淑文,等. 靶向REV3基因siRNA抑制人结肠癌细胞裸鼠移植瘤增殖作用的研究[J]. 宁夏医科大学学报,2017,39(1):19-23.

相似文献/References:

[1]梁 瑞,刘 莹,赵 倩,等.131I标记新型靶向FGF8分子探针的制备及生物活性评价[J].宁夏医科大学学报,2018,(04):389.[doi:10.16050/j.cnki.issn1674-6309.2018.04.004]
 LIANG Rui,LIU Ying,ZHAO Qian,et al.Preparation and Bioactivity Evaluation of a New 131I Labeled FGF8 Targeting Molecular Probe[J].Ningxia Medical University,2018,(04):389.[doi:10.16050/j.cnki.issn1674-6309.2018.04.004]

备注/Memo

备注/Memo:
收稿日期:2017-05-02
基金项目:国家自然科学基金面上项目(81373278)
作者简介:马皓(1992-),男(回族),宁夏人,在读硕士研究生。
通信作者: 张万年(1947-),男,安徽人,教授,博士研究生导师,从事抗真菌和抗肿瘤药物研究。E-mail: zhangwnk@hotmail.com
更新日期/Last Update: 2018-04-30