|本期目录/Table of Contents|

[1]邹观莲,陈 娟,王艳阳,等.放射性小鼠肺纤维化基因表达谱生物信息学动态分析[J].宁夏医科大学学报,2019,(06):577-583.[doi:10.16050/j.cnki.issn1674-6309.2019.06.008]
 ZOU Guanlian,CHEN Juan,WANG Yanyang,et al.Bioinformatics Analysis of Gene Expression Pattern at Different Time Points during Radiation Pulmonary Fibrosis in Mice[J].Ningxia Medical University,2019,(06):577-583.[doi:10.16050/j.cnki.issn1674-6309.2019.06.008]





Bioinformatics Analysis of Gene Expression Pattern at Different Time Points during Radiation Pulmonary Fibrosis in Mice
邹观莲1 陈 娟2 王艳阳3 赵 仁3
(1. 宁夏医科大学研究生院,银川 750004, 2. 宁夏医科大学总医院呼吸与危重症医学科,银川 750004, 3. 宁夏医科大学总医院肿瘤医院放疗科,银川 750004)
ZOU Guanlian1 CHEN Juan2 WANG Yanyang3 ZHAO Ren3
(1. Graduate School of Ningxia Medical University,Yinchuan 750004,China; 2. Department of Respiratory and Critical Care Medicine,the General Hospital of Ningxia Medical University, Yinchuan 750004,China; 3. Department of Radiotherapy,Cancer Hospital,the General Hospital of Ningxia Medical University,Yinchuan 750004,China)
radiation induced lung fibrosismicroarraybioinformatics analysisdifferentially expressed genestime points
目的 探讨放射性肺纤维化(RILF)形成过程中基因表达谱的变化。方法 从美国国立生物技术信息中心( National Center for Biotechnology Information,NCBI) 公共基因芯片数据平台( gene expression omnibus,GEO)下载RILF相关的时间序列基因表达数据。通过信号通路数据库(kyoto encyclopedia of genes and enomes, KEGG) 进行信号通路富集分析,并通过蛋白-蛋白相互作用(protein-protein interaction, PPI)网络分析获得RILF发生过程中的关键基因。结果 在每个时间点分别鉴定不同数量的上调、下调的差异表达基因(DEGs),其中,不同时间点上调的DEGs主要在泛素介导的蛋白质水解、造血通路、昼夜节律、细胞因子受体相互作用等通路显著富集。在下调的DEGs中,不同时间点富集的通路主要为cGMP-PKG信号通路、细胞外基质受体相互作用、唾液分泌和肿瘤相关通路。在照射后第8周这个时间点可以筛选到数量最多的关键基因。这些关键基因中139个属于上调表达,57个属于下调表达。第8周上调表达的关键基因主要在免疫调节、防御反应及细胞活化过程中发挥作用。下调的关键基因主要在细胞周期、细胞分裂及染色体分离过程中发挥作用。结论 X射线照射(2.61Gy·min-1)第8周可能是小鼠RILF发病过程中的关键时期,肺脏基因表达谱随时间变化而明显不同。
Objective To investigate the molecular mechanism of the biological process associated with radiation induced lung fibrosis(RILF) and provide more biological information for further study. Methods Time-series gene expression data of RILF was downloaded from Gene Expression Omnibus(GEO) database. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis and Protein-Protein interaction (PPI) networks analysis were performed. Results Different amount of up-regulated and down-regulated differentially expressed genes(DEGs) were identified at each time point. Ubiquitin mediated proteolysis,Hematopoietic cell lineage,Circadian rhythm,and Cytokine-cytokine receptor interaction were found to be highly enriched in our KEGG analysis of the up-regulated DEGs. For the down-regulated DEGs,the most enriched KEGG pathway were cGMP-PKG signaling pathway,ECM-receptor interaction,salivary secretion,and pathways in cancer of the different time points. The largest number of hub genes could be screened at the time point 8 weeks after irradiation. Total 139 of these hub genes were up-regulated and 57 were down-regulated. At the 8th week,the up-regulated expression hub genes mainly played roles in immunomodulation,defense response and cell activation. The down-regulated hub genes mainly played roles in cell cycle,cell division and chromosome separation. Conclusion Our data suggest that the eighth week of X-ray irradiation(2.61Gy·min-1) may be a critical period in the pathogenesis of RILF in mice,and the changes of gene expression profiles in lungs vary significantly with time.


[1] Bledsoe TJ,Nath SK,Decker RH. Radiation pneumonitis[J]. Clinics in Chest Medicine,2017,38(2):201-208.
[2] Citrin DE,Prasanna PGS,Walker AJ,et al. Radiation-induced fibrosis: mechanisms and opportunities to mitigate.Report of an NCI workshop, September 19, 2016[J]. Radiat Res,2017,188(1): 1-20.
[3] Son B,Kwon T,Lee S,et al. CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress- and ROS-dependent mechanisms[J]. Am J Physiol Lung Cell Mol Physiol,2017,313(5):L916-929.
[4] Jackson IL,Baye F,Goswami CP,et al. Gene expression profiles among murine strains segregate with distinct differences in the progression of radiation-induced lung disease[J]. Dis Model Mech,2017,10(4):425-437.
[5] Xie L,Zhou JD,Zhang SY,et al. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung[J]. Radiat Oncol, 2014,9:111.
[6] Barrett T,Wilhite SE,Ledoux P,et al. NCBI GEO: archive for functional genomics data sets: update[J]. Nucleic Acids Res,2013,41(Database issue): 991-995.
[7] Parkinson H,Kapushesky M,Kolesnikov N,et al. ArrayExpress update: from an archive of functional genomics experiments to the atlas of gene expression[J]. Nucleic Acids Res,2009,37(Database issue): 868-872.
[8] Yuan C,Cai JF. Time-series expression profile analysis of fracture healing in young and old mice[J]. Mol Med Rep,2017,16(4):4529-4536.
[9] Citrin DE ,Shankavaram U,Horton JA ,et al. Role of type II pneumocyte senescence in radiation-induced lung fibrosis[J]. JNCI Journal of the National Cancer Institute,2013,105(19):1474-1484.
[10] Winnepenninckx V,Lazar V,Michiels S,et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome[J]. J Natl Cancer Inst,2006, 98(7): 472-482.
[11] Luo SL,Cao NN, Tang Y,et al. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis[J]. PLoS One,2017,12(6):e0178549.
[12] Huang DW,Sherman BT,Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009,4(1): 44-57.
[13] Franceschini A,Szklarczyk D,Frankild S,et al. STRING v9.1:protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Res,2013,41(Database issue):808-815.
[14] Shannon P,Markiel A,Ozier O,et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504.
[15] Mou T,Zhu D,Wei XF,et al. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis[J]. World J Surg Oncol,2017,15(1): 63.
[16] Rajan Radha R, Chandrasekharan G. Pulmonary injury associated with radiation therapy - Assessment, complications and therapeutic targets[J]. Biomed Pharmacother,2017,89: 1092-1104.
[17] Liang H,Deng LF,Chmura S,et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing[J]. J Immunol, 2013,190(11): 5874-5881.
[18] Zhang H,Han G,Liu H,et al. The development of classically and alternatively activated macrophages has different effects on the varied stages of radiation-induced pulmonary injury in mice[J]. J Radiat Res,2011,52(6): 717-726.
[19] Ding NH,Li JJ,Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis[J]. Curr Drug Targets,2013,14(11):1347-1356.
[20] Willner J,Vordermark D,Schmidt M,et al. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation[J]. Int J Radiat Oncol Biol Phys,2003,55(3):617-625.


[1]赵嘉庆,王 健,王娅娜,等.细粒棘球蚴中国大陆株zw-5基因的克隆 和生物信息学分析[J].宁夏医科大学学报,2005,(02):85.[doi:10.3969/j.issn.1674-6309.2005.02.001]
 ZHAO Jia-qing,WANG Jian,WANG Ya-nan,et al.Cloning and Bioinformatics Analyzing of the zw-5 Gene From Echinococcus Granulosus of China[J].Ningxia Medical University,2005,(06):85.[doi:10.3969/j.issn.1674-6309.2005.02.001]
[2]王 妍,陈晓平,薛晓成,等.腮腺肿瘤中HPV37种亚型的分布[J].宁夏医科大学学报,2012,(06):596.
 WANG Yan,CHEN Xiao-ping,XUE Xiao-cheng,et al.Distribution of 37 Kinds of Human Papillomavirus Genotypes in Parotid Gland Tumors[J].Ningxia Medical University,2012,(06):596.


更新日期/Last Update: 2019-06-30